ANALYTICITY AND hp DISCONTINUOUS GALERKIN APPROXIMATION OF NONLINEAR SCHRÖDINGER EIGENPROBLEMS
Yvon Maday  1, 2@  , Carlo Marcati  3  
1 : Institut Universitaire de France  (IUF)
Institut universitaire de France, Institut universitaire de France
2 : Laboratoire Jacques-Louis Lions  (LJLL)  -  Website
Université Pierre et Marie Curie - Paris 6, Université Paris Diderot - Paris 7, Centre National de la Recherche Scientifique : UMR7598
Université Pierre et Marie Curie, Boîte courrier 187 - 75252 Paris Cedex 05 -  France
3 : Seminar for Applied Mathematics [Zürich]

We study a class of nonlinear eigenvalue problems of Schrödinger type, where the potential is singular on a set of points. Such problems are widely present in physics and chemistry, and their analysis is of both theoretical and practical interest. In particular, we study the regularity of the eigenfunctions of the operators considered, and we propose and analyze the approximation of the solution via an isotropically refined hp discontinuous Galerkin (dG) method.

We show that, for weighted analytic potentials and for up-to-quartic nonlinearities, the eigen-functions belong to analytic-type non homogeneous weighted Sobolev spaces. We also prove quasi optimal a priori estimates on the error of the dG finite element method; when using an isotropically refined hp space the numerical solution is shown to converge with exponential rate towards the exact eigenfunction. In addition, we investigate the role of pointwise convergence in the doubling of the convergence rate for the eigenvalues with respect to the convergence rate of eigenfunctions. We conclude with a series of numerical tests to validate the theoretical results.


Online user: 45 RSS Feed | Privacy
Loading...